Sentient labs is where we build, research, and patent cutting-edge AI techniques. We work across disciplines, internally, and with a wide array of skilled research institutions and universities on the common goal of advancing the state of the art in artificial intelligence. With over 50 patents awarded or pending, we combine our unique mix of experienced AI practitioners with the scale of our massively distributed AI platform to change whole disciplines–and the world–for the better.


Sentient Answering Critical Questions


Evolutionary computation (EC) mimics the principles of biology. In contrast to deep learning, which focuses on modeling and prediction of known solutions, EC allows AI to create new solutions, by recombining, mutating, adapting (i.e. breeding) better and better ideas. Some of our recent research includes work on novelty search, which incentivizes AI to find creative–or novel–solutions, and our online optimization product, Sentient Ascend, which develops effective websites and other content for digital marketing.


Deep learning is another foundation for AI research at Sentient. The main focus of our recent research is on optimization of deep learning architectures and on utilization of multiple datasets through multitask learning. Some of our recent research focuses on massive, unlabelled datasets, such as deep learning applied to raw video.


Neuroevolution is a powerful way to combine evolution and deep learning: evolution is used to automatically optimize deep learning architectures, i.e. the topologies, components, and hyperparameters of neural networks. To put it another way, it is AI designing AI. In this manner, more complex and more powerful deep learning architectures can be discovered, and it is possible to discover them automatically, thus democratizing AI. Our recent work has focused on gated recurrent networks and on multitask networks, improving the state of the art in several machine learning benchmarks, including those in language and vision.

Sentient Answering Critical Questions


Surrogate optimization is another way to combine the power of deep learning and evolutionary computation. The idea is to learn a model of the domain, use the model as a surrogate to optimize interactions with it, and then apply those interactions to the domain. We have applied surrogate optimization e.g. to the problem of creating optimal growth recipes for plants in computer-controlled greenhouse environments (built by OpenAg at MIT Media Lab). In this manner, it is possible to discover effective recipes that take biologists by surprise.


AI should be more than just theory. At Sentient, we believe in not just advancing research but applying that research, our theories, and our network to solving complicated problems. We work both internally and externally, with world class institutions like MIT and Oxford, to find those answers. Here are a few of our projects.


AI research is at an exciting stage. With a million-fold increase in computing power, many of the ideas developed over the last three decades now scale up to solve practical problems. Deep Learning is one of those; Evolutionary Computation is another. Evolution also extends the realm of AI from modeling and prediction to creativity and discovery. In that sense, we believe that evolution is the new deep learning, i.e. the next step in building complex deep learning systems, in commercialization of AI, and in solving hard problems.



After we find the answers to the big questions we put pen to paper and write-up our findings in the form of academic research. Here you can find all the papers we have currently published.



Sentient Labs is the place where AI researchers can put theory into practice. We have millions of CPUs and thousands of GPUs in our network and we use them to advance our research–we’re at fourteen patents and growing– and to answer practical questions. Sentient Labs has interns, folks on scholarship, visiting professors, and full-time AI practitioners all collaborating for a common goal: to solve the world’s most complex problems. We’d love it if you joined us.